admin login

Time of the last modification database: 2014-10-01 15:43:07
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] ... [63] >>
  1. Han, J., Song, Ch., Gao, S., Wang, Y., Chen, Ch., Pan, F., Realization of the Meminductor. ACS Nano, 26th September 2014.
  2. Kim, S., Choi, S.H., Lee, J., Lu, W.D., Tuning Resistive Switching Characteristics of Tantalum Oxide Memristors through Si Doping. ACS Nano, 25th September 2014.
  3. Messerschmitt, F., Kubicek, M., Schweiger, S., Rupp, J.L.M., Memristor Kinetics and Diffusion Characteristics for Mixed Anionic-Electronic SrTiO3-δ Bits: The Memristor-Based Cottrell Analysis Connecting Material to Device Performance. Advanced Functional Materials, Early View, 25th September 2014.
  4. Vokhmintsev, A.S., Weinstein, I.A., Kamalov, R.V., Dorosheva, I.B., Memristive effect in a nanotubular layer of anodized titanium dioxide. Bulletin of the Russian Academy of Sciences: Physics, vol.78, no.9, pp.932-935, 24th September 2014.
  5. Kosta, S.P., Bhatele, M., Gupta, P., Nair, P., Kosta, S., Choubey, S.D., Thakre, L., Vaghela, P.R., Patel, K.N., Dave, B.K., Chavda, J., Bhatt, Ch., Nigam, T., Physical model of human blood electronic memristors network. International Journal of Biomechatronics and Biomedical Robotics, vol.3, no.2, pp.74-79, 23rd September 2014.
  6. Sirakoulis, G.Ch., Stathis, D., Vourkas, I., Shortest Path Computing Using Memristor-Based Circuits and Cellular Automata. Cellular Automata, Lecture Notes in Computer Science, pp.398-407, 22nd September 2014.
  7. Bavandpour, M., Bagheri-Shouraki, S., Soleimani, H., Ahmadi, A., Linares-Barranco, B., Spiking neuro-fuzzy clustering system and its memristor crossbar based implementation. Microelectronics Journal, In Press, Corrected Proof, 20th September 2014.
  8. Shenoy, R.S., Burr, G.W., Virwani, K., Jackson, B., Padilla, A., Narayanan, P., Rettner, Ch.T., Shelby, R.M., Bethune, D.S., Raman, K.V., BrightSky, M., Joseph, E., Rice, P.M., Topuria, T., Kellock, A.J., Kurdi, B., Gopalakrishnan, K., MIEC (mixed-ionic-electronic-conduction)-based access devices for non-volatile crossbar memory arrays. Semiconductor Science and Technology, vol.29, no.10, pp.11, 18th September 2014.
  9. Klimo, M., Šuch, O., Skvarek, O., Fratrik, M., Memristor-based pattern matching. Semiconductor Science and Technology, vol.29, no.10, pp.5, 18th September 2014.
  10. Fey, D., Using the multi-bit feature of memristors for register files in signed-digit arithmetic units. Semiconductor Science and Technology, vol.29, no.10, pp.13, 18th September 2014.
  11. Zheng, L., Shin, S., Kang, S.-M., Memristor-based ternary content addressable memory (mTCAM) for data-intensive computing. Semiconductor Science and Technology, vol.29, no.10, pp.10, 18th September 2014.
  12. Gale, E., TiO2-based memristors and ReRAM: materials, mechanisms and models (a review). Semiconductor Science and Technology, vol.29, no.10, pp.10, 18th September 2014.
  13. Flak, J., Lehtonen, E., Laiho, M., Rantala, A., Prunnila, M., Haatainen, T., Solid-state memcapacitive device based on memristive switch. Semiconductor Science and Technology, vol.29, no.10, pp.6, 18th September 2014.
  14. Gluskin, E., On the physical and circuit-theoretic significance of the Memristor. arXiv:1409.5370v2, [cs.ET], 18th September 2014.
  15. Wu, H., Li, R., Yao, R., Zhang, X., Weak, modified and function projective synchronization of chaotic memristive neural networks with time delays. Neurocomputing, In Press, Accepted Manuscript, 16th September 2014.
  16. Lin, P., Pi, S., Xia, Q., 3D integration of planar crossbar memristive devices with CMOS substrate. Nanotechnology, vol.25, no.40, 16th September 2014.
  17. Guo, Z., Yang, S., Wang, J., Global Exponential Synchronization of Multiple Memristive Neural Networks With Time Delay via Nonlinear Coupling. Neural Networks and Learning Systems, IEEE Transactions on, vol., no., pp.12, 12th September 2014.
  18. Fouda, M.E., Radwan, A.G., Fractional-order Memristor Response Under DC and Periodic Signals. Circuits, Systems, and Signal Processing, pp.10, 12th September 2014.
  19. Papandroulidakis, G., Vourkas, I., Vasileiadis, N., Sirakoulis,G.Ch., Boolean Logic Operations and Computing Circuits Based on Memristors. Circuits and Systems II: Express Briefs, IEEE Transactions on, vol., no., pp.5, 11th September 2014.
  20. Bo-Cheng, B., Reply: Comment on 'Is memristor a dynamic element?'. Electronics Letters, vol.50, no.19, pp.1344–1345, 11th September 2014.
  21. Chu, M., Kim, B., Park, S., Hwang, H., Jeon, M., Lee, B., Neuromorphic Hardware System for Visual Pattern Recognition with Memristor Array and CMOS Neuron. Industrial Electronics, IEEE Transactions on, vol., no., pp.10, 9th September 2014.
  22. Li, N., Cao, J., New synchronization criteria for memristor-based networks: Adaptive control and feedback control schemes. Neural Networks, In Press, Accepted Manuscript, 8th September 2014.
  23. Georgiou, P.S., Barahona, M., Yaliraki, S.N., Drakakis, E.M., On memristor ideality and reciprocity. Microelectronics Journal, In Press, Corrected Proof, pp.9, 6th September 2014.
  24. Sun, J., Shen, Y., Quasi-Ideal Memory System. Cybernetics, IEEE Transactions on, vol., no., pp.10, 4th September 2014.
  25. Ghoneim, M.T., Zidan, M.A., Salama, K.N., Hussain, M.M., Towards neuromorphic electronics: Memristors on foldable silicon fabric. Microelectronics Journal, In Press, Corrected Proof, pp.4, 4th September 2014.
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] ... [63] >>